

Slide 2

What we've learned since Mendel: Chromosomes

- Mendel's laws described in 1860
- Mitosis and meiosis described in the late 1800's
- The chromosome theory of inheritance formed in the early 1900's:
 - Mendelian genes have specific loci on chromosomes
 - Chromosomes undergo segregation and independent assortment

Orwright © 2008 Pearson Education Inc., publishing as Pearson Benjumin Cummings

Slide 5

Slide 7

	_
 	_
 	_

The Chromosomal Basis of Sex

- In humans and some other animals, there is a chromosomal basis of sex determination
- In humans and other mammals, there are two varieties of sex chromosomes: a larger X chromosome and a smaller Y chromosome
- Only the ends of Y have regions that are homologous with X
- The SRY gene on Y codes for the development of testes

Consider C 2000 Barrers Education In Consideration Barrers Burious Consideration

Æ.

Slide 11

Slide 12

Inheritance of Sex-Linked Genes

- The sex chromosomes have genes for many characters unrelated to sex
- A gene located on either sex chromosome is called a sex-linked gene
- In humans, sex-linked usually refers to a gene on the larger X chromosome
- Sex-linked genes follow specific patterns of inheritance

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummin

Fig. 15-7	x X ⁿ Y d Q X ⁿ X ⁿ	Y	X ^N X ⁿ x X ⁿ Y d
33.0	(" X"Y Eggs X" X"	x ⁿ x ⁿ Y Eggs x	erm (x") (Y) (N) (X"X") (X"Y) (2") (X"X") (X"Y)
(a) Example - ((b) Colorblindness: N = norm	(c) al color vision; n =	colorblind
	affected; light orange = ca ssive sex-linked trait to b		= colorblind
	ale needscopy/copie e needscopy/copie		
Sex-linked	d recessive disorders are	much more commo	on in

Slide 14

Some disorders caused by recessive alleles on the X chromosome in humans:

- Color blindness
- Duchenne muscular dystrophy
- Hemophilia

opytight © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Slide 15

X Inactivation in Female Mammals

- In mammalian females, one of the two X chromosomes in each cell is randomly inactivated during embryonic development
- The inactive X condenses into a Barr body
- What modification to DNA causes the condensation of one X chromosome?
- If a female is heterozygous for a particular gene located on the X chromosome, she will be a <u>mosaic</u> for that character

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummin

Slide 16

Concept 15.3: Linked genes tend to be inherited together because they are located near each other on the same chromosome

- Each chromosome has hundreds or thousands of genes
- Genes located on the same chromosome that tend to be inherited together are called linked genes

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjumin Cummings

Slide 20

- However, nonparental phenotypes were also produced from Morgan's Drosophila crosses.
- Understanding this result involves exploring genetic recombination, the production of offspring with combinations of traits differing from either parent
- The genetic findings of Mendel and Morgan relate to the chromosomal basis of recombination

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cumming

Slide 21

Recombination of Linked Genes: Crossing Over

- Morgan discovered that genes can be linked, but the linkage was incomplete, as evident from recombinant phenotypes
- Morgan proposed that some process must sometimes break the physical connection between genes on the same chromosome
- That mechanism was the **crossing over** of homologous chromosomes

http://www.sinauer.com/cooper/4e/animations0602.html - animation

PLAY Animation: Gros

Slide 22

Slide 24

Mapping the Distance Between Genes Using Recombination Data: Scientific Inquiry

• Alfred Sturtevant, one of Morgan's students, constructed a genetic map, an ordered list of the genetic loci along a particular chromosome

• Sturtevant predicted that the farther apart two genes are, the higher the probability that a crossover will occur between them and therefore the higher the recombination frequency

- A linkage map is a genetic map of a chromosome based on recombination frequencies
- Distances between genes can be expressed as map units; one map unit, or centimorgan, represents a 1% recombination frequency
- Map units indicate relative distance and order, not precise locations of genes

Commission C. 2008 Persona Februarian Inc., multiplinary or Persona Renismin Commission

Slide 26

- \bullet Genes that are far apart on the same chromosome can have a recombination frequency near 50%
- Such genes are physically linked, but genetically unlinked, and behave as if found on different chromosomes

Slide 27

Concept 15.4: Alterations of chromosome number or structure cause some genetic disorders

- Large-scale chromosomal alterations often lead to spontaneous abortions (miscarriages) or cause a variety of developmental disorders
- In nondisjunction, pairs of homologous chromosomes do not separate normally during meiosis
- As a result, one gamete receives two of the same type of chromosome, and another gamete receives no copy

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cumming

Slide 29

- Aneuploidy results from the fertilization of gametes in which nondisjunction occurred
- Offspring with this condition have an abnormal number of a particular chromosome
- A monosomic zygote has only one copy of a particular
- A **trisomic** zygote has three copies of a particular chromosome

Down Syndrome (Trisomy 21)

Slide 30

Aneuploidy of Sex Chromosomes

- Nondisjunction of sex chromosomes produces a variety of aneuploid conditions
- Klinefelter syndrome is the result of an extra chromosome in a male, producing XXY individuals
- Monosomy X, called *Turner syndrome*, produces X0 females, who are sterile; it is the only known viable monosomy in humans

- Polyploidy is a condition in which an organism has more than two complete sets of chromosomes
 - Triploidy (3n) is three sets of chromosomes
 - Tetraploidy (4n) is four sets of chromosomes
- Polyploidy is common in plants, but not animals
- Polyploids are more normal in appearance than aneuploids

oryright © 2008 Pearson Education Inc., publishing as Pearson Benjumin Comming

Slide 32

Alterations of Chromosome Structure

- Breakage of a chromosome can lead to four types of changes in chromosome structure:
 - Duplication repeats a segment
 - Translocation moves a segment from one chromosome to another
 - Inversion reverses a segment within a chromosome
 - Deletion removes a chromosomal segment

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

(a) ABCDE FGH ABCE FGH Identify each mutation
(b) ABCDE FGH ABCBCDE FGH
(c) ABC DE FGH ADC BE FGH
(d) A B C D E F G H M N O C D E F G H
M N O P Q R

Disorders Caused by Structurally Altered Chromosomes

• The syndrome *cri du chat* ("cry of the cat"), results from a specific deletion in chromosome 5

- A child born with this syndrome is mentally retarded and has a catlike cry; individuals usually die in infancy or early childhood
- Certain cancers, including chronic myelogenous leukemia (CML), are caused by translocations of chromosomes

Commission C. 2008 Persons Education Inc., multiplinar as Persons Reviseries Commisses

Slide 35

Concept 15.5: Some inheritance patterns are exceptions to the standard chromosome theory

- There are two normal exceptions to Mendelian genetics
- One exception involves genes located in the nucleus, and the other exception involves genes located outside the nucleus

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Slide 36

Genomic Imprinting

- For a few mammalian traits, the phenotype depends on which parent passed along the alleles for those traits
- Such variation in phenotype is called genomic imprinting
- Genomic imprinting involves the silencing of certain genes that are "stamped" (epigenetically marked) with an imprint <u>during</u> gamete production (in the egg or sperm)

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Slide 38

- It appears that imprinting is the result of the methylation (addition of –CH₃) of DNA
- Genomic imprinting is thought to affect only a small fraction of mammalian genes
- Most imprinted genes are critical for embryonic development
- Diseases?

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Slide 39

Inheritance of Organelle Genes

- Extranuclear genes (or cytoplasmic genes) are genes found in organelles in the cytoplasm
- Mitochondria, chloroplasts, and other plant plastids carry small circular DNA molecules
- Extranuclear genes are inherited maternally because the zygote's cytoplasm comes from the egg

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cumming
